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We consider a question related to the kinetic theory of granular materials. The
model of hard spheres with inelastic collisions is replaced by a Maxwell model,
characterized by a collision frequency independent of the relative speed of
colliding particles. Our main result is that, in the space-homogeneous case, a self-
similar asymptotics holds, as conjectured by Ernst–Brito. The proof holds for
any initial distribution function with a finite moment of some order greater than
two.
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1. INTRODUCTION

The concept of self-similar solutions of nonlinear evolution equations and
their role in self-similar asymptotics appear to be very useful and fruitful in
various domains of mathematical physics. Although it is not too difficult
to describe (on the basis of the properties of the symmetry group of the
equation) possible classes of self-similar solutions, the most difficult
problem is to prove that some of these solutions play an asymptotic role
for a wide class of initial conditions.

The very first results of this type in the kinetic theory of gases were
recently obtained in refs. 1 and 2. The self-similar solutions (with infinite
energy) of the Boltzmann equation for Maxwell molecules were constructed



(two of them in an explicit form) and it was proved that these solutions do
describe a large time asymptotics for certain classes of initial conditions.

Independently, Ernst and Brito (3, 4) (see also refs. 5 and 6) studied the
large time behavior of the solutions of the so-called inelastic Maxwell
models (7) and conjectured that the solutions must have a self-similar
asymptotics. The conjecture seemed to be quite non-trivial since the corre-
sponding self-similar solution (whose possible existence was just indicated
in refs. 3 and 4) would have a power-like high energy tail. It was already
known that, for almost all values of the restitution coefficient, self-similar
solutions with finite moments of all orders cannot be positive. (7)

The first proof of Ernst–Brito conjecture for a subclass of isotropic
initial conditions which includes Maxwellians was given in ref. 8. It was clear,
however, that the restrictions on initial conditions used in ref. 8 are related to
mathematical technicalities, not to physics. The main goal of the present
paper is to prove the conjecture for a very general class of initial conditions.

The paper is organized as follows. We formulate the general problem
and related known results (Propositions 2.1 and 2.2) in Section 2. Then, in
Section 3, we perform some necessary calculations of moments. Section 4
is devoted to self-similar solutions (Proposition 4.3) and an ‘‘incomplete’’
proof of the conjecture (lemma at the end of Section 4). The proof is
completed in Section 5 which ends with a theorem which contains our main
results.

One can summarize our main result by saying that we prove that the
self-similar asymptotics (Ernst–Brito conjecture) holds for any initial dis-
tribution function having ‘‘something more’’ than finite energy (namely, a
finite moment of some order greater than two). It seems plausible that this
restriction, typical also for the classic (elastic) Boltzmann equation, cannot
be weakened. (9)

We stress that all our results relate to the spatially homogeneous
systems without external forces. The questions on how to use them for
driven and/or spatially inhomogeneous systems remain open. We hope to
return to these questions in the future.

2. STATEMENT OF THE PROBLEM

The d-dimensional (d=2, 3,...) Maxwell model for inelastic particles
(in the space homogeneus case) is defined as follows. (8) The one-particle
distribution function f(v, t) (v ¥ Rd, t ¥ R+) satisfies the Boltzmann-type
equation

“f
“t

=Q(f, f); f|t=0=f0(t), (2.1)
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such that the weak form reads

“

“t
(f, h)=

1
2

F
R

d
F

R
d

F
Sd − 1

f(t, v) f(t, w) B 1 (u · n)
|u|

2

× [h(vŒ)+h(wŒ) − h(v) − h(w))] dn dw dv. (2.2)

Here h(v) ¥ C.(Rd) is a test function, B(cos h) \ 0 the collision kernel
normalized by

F
Sd − 1

B(w · n) dn=1. (2.3)

Other notations are given by

(f, h)=F
R

d
f(v) h(v),

vŒ=v −
1+e

2
(u · n) n; wŒ=w+

1+e
2

(u · n) n u=v − w.

(2.4)

where 0 < e < 1 is the restitution coefficient by which the after-collision
velocities vŒ, wŒ can be computed.

A connection between the Maxwell model (2.1) with the usual kinetic
equation for d-dimensional inelastic hard spheres is explained in detail in
ref. 8 (see also ref. 7 for the case d=3). The corresponding collision kernel
(related to the hard sphere model) reads

B(cos h)=Ad |cos h|, (2.5)

where the constant factor Ad is such that the condition (2.3) is satisfied.
For the sake of generality we consider an arbitrary kernel B ¥ L+([− 1, 1])
satisfying Eq. (2.3).

The main advantage of the inelastic Maxwell model (2.1), (2.2) is the
well known simplification (7, 8) when we use the Fourier transform. If we
denote

f(k, t)=(f, e−ik · v), f0(k)=(f0, e−ik · v), k ¥ Rd. (2.6)

Then the equation for f(k, t) reads as follows (see ref. 8 for details)

“f

“t
=Q̂(f, f)=F

Sd − 1
dn B(k̂ · n)[f(k+) f(k − k+) − f(0) f(k)], (2.7)
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where

k+=z(k · n) n, z=
1+e

2
, k̂=

k
|k|

f|t=0=f0(k)

Without loss of generality we can assume that

(f0, 1)=1, (f0, v)=0, (f0, |v|2)=d, (2.8)

and thus

f0(0)=1, (Nf0)|k=0=0, (Df0)|k=0=−d, (2.9)

We remark that Eqs. (2.2), (2.4), (2.7) coincide with the usual (elastic)
Boltzmann equation for pseudo-Maxwell molecules, if z=e=1. This case
was studied in detail by the Fourier transform since 1975. (1, 2, 8–11) All the
results on uniqueness and existence of solutions to the Cauchy problem
(2.1), (2.7) can be easily extended to the inelastic case, all proofs (based on
Wild’s sums, etc.) remaining practically the same. Therefore we omit proofs
and just formulate the main results:

Proposition 2.1. Let f0(v) be a generalized density of the probabil-
ity measure (i.e., a non-negative measure in Rd normalized to unity)
satisfying Eqs. (2.8). Then there exists a unique characteristic function (the
Fourier transform of a probability measure) f(k, t) which solves Problem
(2.7). Moreover, f(k, t) is a unique solution of this problem in the class of
locally bounded functions.

Proposition 2.2. If, in addition to the assumptions in Proposition 1,
there exists d > 0 such that

(f0, |v|2(1+d)) < ., (2.10)

then f(k, t) ¥ C2(Rd) for all t \ 0 and

(i) the following asymptotic formula holds:

f(k, t)=1 − 1
2 pabkakb+O(|k|2(1+d)), |k| Q 0 (2.11)

(here and below a summation over repeated Cartesian indices a, b=1,..., d
is assumed);

(ii) |f(k, t)| [ 1 for all t \ 0 and f(k, t) Qt Q . 1 uniformly in Rd.
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Remark. The condition (2.10) is needed only for the asymptotic
equality (2.11) which plays an important role in the self-similar asymptotics
(see below).

We note that all properties of the (generalized) solution f(v, t) of the
kinetic equation (2.1) can be easily obtained from the properties of the
characteristic function f(k, t)=F[f] on the basis of the general theory
of characteristic functions (see, e.g., ref. 12). In particular, the pointwise
convergence fn(k) Q f(k) of the sequence {fn(k)} to the function f(k),
continuous at k=0 with f(0)=1, implies the convergence of the corre-
sponding generalized densities fn(v)=F−1[fn] in the sense of probability
measures and the existence of the limiting measure. Thus, the property (ii)
means that

f(v, t) ||Qt Q .
d(v) (2.12)

in sense described above.
Thus in the sequel we shall mostly discuss properties of f(k, t), not of

f(v, t).
On one hand, everything seems very simple and clear; any initial dis-

tribution function f0(v) satisfying Eqs. (2.8), (2.10) relaxes, as t Q .,
to a delta function (2.12) (space homogeneous cooling). On the other hand,
the solution f(v, t) is expected to have a very interesting asymptotics first
conjectured by Ernst and Brito (3, 4): if we denote

T(t)=
1
d

(f, |v|2), f(v, t)=[T(t)]−d/2 F 1 v

`T(t)
, t2 , (2.13)

then the re-scaled solution F(w, t) tends (in a certain sense), as t Q ., to
a function F.(|w|), which, in turn, is a steady solution of the re-scaled
version of Eq. (2.1) (or, equivalently, Eq. (2.13) with F.(|w|) instead of
F(w, t) defines a self-similar solution of Eq. (2.1)).

The first proof of the conjecture (for an important sub-class of iso-
tropic functions f0(|v|) that includes Maxwellian distributions) was recently
given in ref. 8. The main goal of the present paper is to give a complete
proof of the Ernst–Brito conjecture for any initial data satisfying the
assumption of Proposition 2.2. In other words, the conjecture (where the
convergence F(w, t) Qt Q . F.(|w|) is understood in the sense of probability
measures) is true for any initial distribution function f0(v) with a finite
moment of order greater than 2 (the assumption (2.10) is the only essential
restriction we shall need).
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3. EVOLUTION OF THE FIRST MOMENTS

We begin with an exact calculation of the tensor pab in Eq. (2.11) (see
ref. 13 for the case d=3). By substituting the asymptotic expansion (2.11)
into Eq. (2.7), we obtain for the terms of second order in k:

kakb

dpab

dt
=pabL̂kakb (3.1)

L̂f(k, t)=Of[z(k · n) n]+f[k − z(k · n) n] − f(k)P, (3.2)

in the notation

OF(k, n)P=F
Sd − 1

dn B(k̂ · n) F(k, n). (3.3)

The operator L̂ is obviously isotropic (invariant under rotations of Rd) and
invariant under scaling transformations k Q ak, a=const. These properties
define the polynomial eigenfunctions of L̂.

In particular,

L̂ |k|2=−l0 |k|2, L̂ 1kakb −
|k|2

d
dab

2=−l1
1kakb −

|k|2

d
dab

2 (3.4)

where

l0=2z(1 − z) O(k̂ · n)2P,

l1=l0+
2dz2

d − 1
O(k̂ · n)2[1 − (k̂ · n)2]P.

(3.5)

The tensor pab can be written as

pab=(f, vavb)=1f, vavb −
|v|2

d
dab

2+T(t) dab=qab+T(t) dab, qaa=0
(3.6)

in the notation (2.13). Then Eq. (3.1), (3.4), (3.6) yield (note that T(0)=1
by the assumption (2.8))

T(t)=e−l0t, qab(t)=qab(0) e−l1t. (3.7)
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Thus we obtain the expansion (2.11) in a more explicit form:

f(k, t)=1 −
|k|2

2
e−l0t −

1
2

qab(t)1kakb −
|k|2

d
dab

2

+O(|k|2(1+d)) e−l1t, d > 0, |k| Q 0. (3.8)

4. SELF-SIMILAR ASYMPTOTICS

In the following we assume that the kernel B(cos h) and the dimension
d \ 2 are fixed. Let the initial characteristic function be isotropic, f0=
f0(|k|). Then the asymptotic expansion (3.8) reduces to

f(|k|, t)=1 −
|ke−mt|2

2
+O(|k|2(1+d)), m=

l0

2
, |k| Q 0, (4.1)

and (when the higher order terms are omitted) can be considered as a
function of the self-similar variable

x=|k| e−mt. (4.2)

This remark leads to the problem of the existence of a self-similar solution

f(|k|, t)=k(x)=k(|k| e−mt) (4.3)

of Eq. (2.7). This question was discussed in detail in a previous paper, (8)

where the following statement was proved (we slightly re-formulate the
result of ref. 8, Theorem 7.1, in a form convenient to our goals):

Proposition 4.1.

(A) There exists a unique self-similar solution (4.3) of Eq. (2.7)
satisfying two assumptions: k(|k|) is bounded for |k| ¥ R+ and

k(|k|)=1 − 1
2 |k|2+ · · · , |k| Q 0, (4.4)

(B) The function k(|k|), defined in (A), is a characteristic function
such that

e−|k|2/2 [ k(|k|) [ e−|k|(1+|k|), k ¥ Rd. (4.5)

The corresponding solution of the kinetic equation (2.1) reads

f(|v|, t)=edmtF(|v| emt), F(|v|)=(2p)−d (k, e ik · v), v ¥ Rd. (4.6)

Asymptotics for a Granular Material 409



(C) The function F(|v|) has a power-like decay, as |v| Q ., for
‘‘almost all’’ kernels B(cos h) in Eq. (2.2).

Remark. Proposition 4.3 is formulated for a given kernel B(cos h)
satisfying Eq. (2.3) and for a given dimension d \ 2. The functions k(|k|)
and F(|v|) are obviously different for different choices of B and d.

Then, having uniquely defined the relevant self-similar solution (4.3)
by Proposition 4.1, we can formulate our goal in clear terms: we must
prove that

f(kemt, t) ||Qt Q .
k(|k|), k ¥ Rd. (4.7)

(note that the pointwise convergence is sufficient for our goals since
f(kemt, t) is, for any fixed t > 0, a characteristic function.) We expect that
the limit (4.7) can be proved under the standard assumptions (2.3), (2.8)
(the latter guarantee the leading terms of the asymptotics (3.8)) and the
only essential restriction (3.8).

The idea of the proof is the same as in ref. 8. If Eq. (4.7) is true for
two solutions f1, 2(k, t) satisfying (2.8) (3.8) then

lim
t Q .

|f1(kemt, t) − f2(kemt, t)|=0, k ¥ Rd. (4.8)

Therefore, if we denote:

u=f1 − f2, F=1
2 (f1+f2) (4.9)

and consider the equation for u(x, t). By the elementary identity

ab − cd=1
2 [(a+c)(b − d)+(b+d)(a− c)] (4.10)

and Eq. (2.7) (in the notation (3.3)) we obtain

“u
“t

+u=OF(k+) u(k − k+)+F(k − k+) u(k+)P,

u|t=0=u0(k)=f1(k, 0) − f2(k, 0)

(4.11)

The obvious estimate

F [ 1
2 (|f1 |+|f2 |) [ 1 (4.12)
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leads to the inequality

:“u
“t

+u: [ L̂+ |u|, L̂+=L̂+Î, u|t=0=u0 (4.13)

where Î is the identity, L̂ is the linearized operator defined in Eq. (3.2). If
u=ye−t then

:“y
“t
: [ L̂+ |y|, y|t=0=u0(k) (4.14)

On the other hand for any complex function y(k, t) (k ¥ Rd is fixed)

|y| :“ |y|
“t

:=1
2
: “

“t
(yyg) :=1

2
:y “yg

“t
+yg “y

“t
: [ |y| :“y

“t
: ,

where yg is the complex conjugate of y. Therefore (note that y and its time
derivative are continuous functions of k ¥ Rd and t ¥ R+):

:“ |y|
“t

: [ :“y
“t
: [ L̂+ |y|, y|t=0=u0(k). (4.15)

The operator L̂+ is positive (L̂+y \ 0 for any y \ 0). Hence

|y(k, t)| [ e tL̂+
|u0(k)|, (4.16)

or, equivalently,

|u(k, t)| [ e tL̂ |u0(k)|, (4.17)

in the notation (3.2). This simple consideration already leads to the proof
of Eq. (4.7) under the additional restriction

qab(0)=1f0, vavb −
|v|2

d
dab

2=0. (4.18)

In such a case

u0(k)=O(|k|2(1+d)), |k| Q 0; |u0(k)| [ |f1(k, 0)|+|f2(k, 0)| [ 2.
(4.19)

Hence for any 0 < E < d there exists a constant AE such that

|u0(k)| [ AE |k|2(1+E), (4.20)
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and therefore

(e tL̂ |u0 |)(k) [ AE |k|2(1+E) e−l(1+E) t, (4.21)

where

l(p)=F
Sd − 1

dn B(k̂ · n){1 − z2p(k̂ · n)2p − [1 − b(k̂ · n)2]p},

k̂ ¥ Sd − 1, b=z(2 − z), p \ 1, (4.22)

(l(p) can be expressed through a 1-d integral, but we do not need it). Thus
we obtain from the estimate (4.17)

|u(k, t)| [ AE |k|2(1+E) e − l(1+E) t, (4.23)

for any k ¥ Rd, t ¥ R) 0 < E < d provided the condition (4.18) is fulfilled.
We note that

m=
l

2
=

1
2

l(1) (4.24)

in the notation (3.5), (4.1), (4.22). Hence

|u(kemt, t)| [ AE |k|2(1+E) e − D(E) t, D(E)=l(1+E) − (1+E) l(1). (4.25)

The inequality D(E) > 0 was already proved (in a more general case) in
ref. 8 (Lemma 6.1). For the reader’s convenience we also present a simpli-
fied proof here. It is sufficient to show that

DŒ(0)=lŒ(1) − l(1) > 0. (4.26)

A simple calculation leads to the equality

DŒ(0)=F
Sd − 1

dn B(k̂ · n) F[(k̂ · n)2, z], (4.27)

where

F(x; z)=a(z2x)+a(1 − bx) − 1,

a(x)=x(1 − log x), 0 [ x [ 1, 1
2 [ z [ 1,

b=z(2 − z)=1 − (1 − z)2.
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We consider F(x; z) as a function of x ¥ [0, 1] for a fixed 1/2 [ z [ 1. It is
easy to verify that

F(0; z)=0, F(1; z)=a(z2)+a[(1 − z)2)] − 1;

Fx(x; z) ||Qx Q 0 ., Fxx(x; z) < 0,

where the index x denotes a partial derivative with respect to x. Hence,
F(x; z) cannot have local minima in (0, 1). Therefore F(x; z) > 0 for all
x ¥ (0, 1) provided F(1; z) \ 0. Noting that

F(1; 1)=0, Fz(1; z)=4[h(1 − z) − h(z)], h(z)=z log z,

we observe that hŒ(z) > 0 if z > e−1. Hence Fz(1; z) < 0 for z ¥ (1/2, 1] and
Fz(1; 1/2)=0. Therefore

F(1; z) > 0; S F(x; z) > 0, 1
2 [ z < 1 0 < x [ 1.

Hence DŒ > 0, (see Eq. (4.27)) provided B(cos h) is not concentrated at
h=p/2. The latter case, however, is not interesting at all since it leads to
the equality l0=2m=0 (see Eq. (4.24)). To exclude such case it is enough
to assume B(x) ¥ L1

+([− 1, 1]).
Hence the inequality D(E) > 0 holds in all cases when m > 0. Then we

conclude, by the estimate (4.25) and the definition (4.24) that

lim
t Q .

|u(kemt, t)|=0, k ¥ Rd, (4.28)

where u(k, t) denotes the difference between any two solutions of the
problem (2.7) with an initial distribution function satisfying the condition
(4.18). Taking the self-similar solution k(kemt) as one of the two we obtain
the following result

Lemma 4.2. Let f(v, t) be any solution of the problem (2.1) satis-
fying the conditions (2.8) and (4.18). Then its characteristic function
f(k, t)=(f, e−ik · v) has the self-similar asymptotics

lim
t Q .

f(kemt, t)=k(k), k ¥ Rd,

where k(k) is defined in Proposition 4.3.

In the next section we shall see that the extra condition (4.18) can be
removed.
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5. COMPLETE PROOF OF THE CONJECTURE

Let us consider the most general case. We return to the (exact!)
Eq. (4.11) and represent u(k, t) as a sum

u(k, t)=u1(k, t)+w(k, t)

u1=
1
2

bab(t)1kakb −
|k|2

d
dab

2 , bab=q1
ab − q2

ab, w=O(|k|2(1+d))
(5.1)

We also note that, in the notations (3.5), (4.13),

bab(t)=bab(0) e−l1t,
“u1

“t
+u1=L̂+u1, (5.2)

Then we obtain from Eq. (4.11)

“w
“t

+w=OF(k+) w(k − k+)+F(k − k+) w(k+)P

O[1 − F(k+)] u1(k − k+)+[1 − F(k − k+)] u1(k+)P, w|t=0=w0(k)

(5.3)

In order to estimate the source term we note that

|F(k)| [ 1, |1 − F(k)| [ 2; 1 − F(k)=O(|k|2), k Q 0

Hence for any 0 < E < 2 there exists a constant BE such that

|1 − F(k)| [ BE |k|2E, k ¥ Rd.

On the other hand,

|u1(k, t)| [ const. |k|2 e−l1t, k ¥ Rd.

Therefore

:“w
“t

+w: [ L̂+ |w|+CE |k|2(1+E) e−l1t

The same arguments as in Section 4 (see derivation of Eq. (4.17) from
Eq. (4.13)) lead to the estimate

“|w|
“t

[ L̂ |w|+CE |k|2(1+E) e−l1t
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Hence (note that e tL̂ is a positive operator) we obtain

|w(k, t)| [ e tL̂ |w0(k)|+CE F
t

0
dy e−l1(t − y)eyL̂ |k|2(1+E) (5.4)

The first term was already estimated in Eq. (4.21) (we assume that the
condition (4.20) holds for w0(k)). The second term, which we denote by
IE(k, t), reads

IE(k, t)=CE F
t

0
dy e−l1(t − y)e−l(1+E) y |k|2(1+E)

=CE

|k|2(1+E)

l1 − l(1+E)
[e−l(1+E) t − e−l1t].

We note that l(1+E) Q l(1)=l0, as E Q 0, whereas l1 > l0 (see Eq. (3.5))
does not depend on E. Therefore we obtain (for sufficiently small E > 0) the
same upper estimate

|IE(k, t)| [ DE |k|2(1+E) e−l(1+E) t,

as we got already in (4.21) for the first term in the right hand side of (5.4).
Hence

|w(k, t)| [ EE |k|2(1+E) e−l(1+E) t,

and (see Eqs. (5.1) and (5.2))

|u(k, t)|=|u1(k, t)+w(k, t)| [ EE |k|2(1+E) e−l(1+E) t+CE |k|2 e−l1t.

Therefore

|u(kemt, t)| [ EE |k|2(1+E) e−D(E) t+CE |k|2 e−(l1 − l0) t,

in the notation (4.25). The inequality D(E) > 0 was proved in Section 4, and
we already mentioned that l1 > l0=2m. Thus the equality

lim
t Q .

|f1(kemt, t) − f2(kemt, t)|=0, k ¥ Rd (5.5)

is proved for any two solutions of the problem (2.7) without the assump-
tion q1

ab=q2
ab=0 used in Section 5. If we replace f2(k, t) by the self-similar

solution k(ke−mt) and f1(k, t) by f(k, t), then our result reads

lim
t Q .

f(kemt, t)=k(k), k ¥ Rd
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where f0(k)=f(k, 0) satisfies the most general assumptions of Proposi-
tions 2.1 and 2.2.

We already mentioned in Section 4 that the pointwise convergence of
the characteristic functions implies the weak convergence of distribution
functions. Therefore we can formulate the final result in terms of solutions
of the kinetic equation (2.1):

Theorem 5.1. Let f(v, t) be the solution of the problem (2.1),
where

(f0, 1)=1, (f0, v)=0, (f0, |v|2)=d, (f0, |v|2+d) < ., d > 0.

Then

e−dmtf(ve−mt, t) Q F(v)=0, t Q ., d \ 2,

where the convergence is understood in the sense of probability measures
and the existence of the limiting measure, F(v) and m are defined in Prop-
osition 4.3.

Proof. It is already given above. We just note that the term ‘‘solu-
tion’’ is understood in the same sense as in Proposition 2.1.

Thus, the Ernst–Brito conjecture is proved for practically all initial
conditions having interest in the applications.
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